課程目標
本課程旨在為非政府組織和商業機構的專業人員提供數據分析和商業智能的基礎知識和實踐技能。學員將學習如何有效地收集、處理、分析和視覺化數據,以支持更明智的決策和更好的業務運營。
課程內容
Module 1: 數據分析基礎(3小時)
在這個模組中,學員將學習數據分析的基本概念和技巧。我們將探討數據收集、數據清理、數據探索和數據可視化的最佳實踐。此外,我們還將介紹常見的數據分析工具和技術,並深入研究如何應用它們來解決實際挑戰。
Module 2: 高級數據分析方法(3小時)
這個模組將深入研究高級數據分析方法,包括機器學習和預測分析。學員將了解如何使用機器學習算法來解決實際業務問題,並學會如何進行預測建模以預測未來趨勢。我們將著重探討不同類型的機器學習算法,例如監督學習、無監督學習和強化學習,以及它們在數據分析中的應用。
Module 3: 商業智能工具和數據可視化(3小時)
在這個模組中,我們將探討商業智能工具和數據可視化的重要性。學員將學習如何使用工具如Tableau和Power BI來創建交互式儀表板,以及如何有效地傳達數據洞察。我們將深入研究不同類型的可視化技術,包括靜態和動態可視化,以及如何根據目標受眾的需求選擇適當的可視化方法。
Module 4: 數據倫理和法規合規(2小時)
數據分析和商業智能涉及處理數據,因此我們必須深入研究數據倫理和法規合規的問題。這個模組將討論隱私保護、數據安全和合規性的最佳實踐,以確保學員了解如何合法和道德地處理數據。我們將探討全球數據保護法規,並強調如何在數據分析項目中遵守這些法規。
Module 5: 案例研究和實踐項目(3小時)
最後一個模組將提供實際案例研究和實踐項目,讓學員應用他們所學的知識和技能。學員將參與真實世界的數據分析項目,並在專家的指導下解決實際業務挑戰。我們將提供多個案例研究,涵蓋不同行業和應用領域,以幫助學員更好地應用他們的數據分析和商業智能技能。
This course aims to provide professionals in non-governmental organizations and commercial enterprises with foundational knowledge and practical skills in data analytics and business intelligence. Participants will learn how to effectively collect, process, analyze, and visualize data to support smarter decision-making and better business operations.
Module 1: Fundamentals of Data Analytics (3 hours)
In this module, participants will learn basic concepts and skills in data analytics. We will explore best practices for data collection, data cleaning, data exploration, and data visualization. Additionally, we will introduce common data analytics tools and techniques and delve into how to apply them to solve real-world challenges.
Module 2: Advanced Data Analytics Methods (3 hours)
This module will explore advanced data analytics methods, including machine learning and predictive analytics. Participants will learn how to use machine learning algorithms to solve real business problems and how to perform predictive modeling to forecast future trends. We will focus on different types of machine learning algorithms, such as supervised learning, unsupervised learning, and reinforcement learning, and their applications in data analytics.
Module 3: Business Intelligence Tools and Data Visualization (3 hours)
In this module, we will discuss the importance of business intelligence tools and data visualization. Participants will learn how to use tools like Tableau and Power BI to create interactive dashboards and how to effectively communicate data insights. We will explore different types of visualization techniques, including static and dynamic visualization, and how to choose the appropriate visualization method based on the target audience's needs.
Module 4: Data Ethics and Regulatory Compliance (2 hours)
Data analytics and business intelligence involve handling data, so it is essential to delve deep into issues of data ethics and regulatory compliance. This module will discuss best practices for privacy protection, data security, and compliance to ensure participants understand how to handle data legally and ethically. We will explore global data protection regulations and emphasize how to comply with these laws in data analytics projects.
Module 5: Case Studies and Practical Projects (3 hours)
The final module will offer real-world case studies and practical projects to apply the knowledge and skills learned. Participants will engage in real-world data analytics projects and solve actual business challenges under expert guidance. We will provide multiple case studies covering different industries and application areas to help participants better apply their data analytics and business intelligence skills.
課程目標
本課程旨在為中小企業專業人員提供在AWS平台上進行數據分析的技能和知識。學員將學習如何有效地使用AWS服務來處理、分析和可視化數據,以做出智能業務決策。
課程內容
Module 1: 數據存儲和ETL過程(3小時)
在這個模組中,學員將深入研究AWS S3和AWS Glue,這兩個關鍵服務用於數據存儲和ETL(提取、轉換、加載)過程。學員將學會如何建立數據目錄、準備數據,以及如何使用AWS Glue來計劃數據處理任務。
Module 2: 使用AWS Athena和Redshift進行高級分析(3小時)
本模組將引導學員使用AWS Athena進行交互式查詢和AWS Redshift進行強大的可擴展數據倉儲。學員將了解如何運行複雜的查詢、優化性能,以及如何在預算範圍內有效管理這些AWS服務。
Module 3: 使用AWS Kinesis進行實時數據分析(3小時)
這個模組將深入研究AWS Kinesis,該服務用於實時數據流式處理和分析。學員將學會如何使用Kinesis Data Streams、Data Firehose、Data Analytics和Video Streams來滿足各種實時數據處理需求。
Module 4: 使用AWS QuickSight進行商業智能(3小時)
在這個模組中,學員將學習如何使用AWS QuickSight來視覺化和分析業務數據。學員將學會如何建立交互式儀表板、設置電子郵件報告,以及將分析嵌入應用程序中。
Module 5: 實踐中的AWS數據分析項目(3小時)
最後一個模組將提供實際項目,讓學員應用他們所學的知識和技能。學員將參與真實世界的AWS數據分析項目,解決實際業務挑戰,並在專家的指導下實際應用他們的技能。
This course aims to equip professionals in small and medium-sized enterprises with the skills and knowledge to perform data analytics on the AWS platform. Participants will learn how to effectively use AWS services to process, analyze, and visualize data for making intelligent business decisions.
Module 1: Data Storage and ETL Process (3 hours)
In this module, participants will delve into AWS S3 and AWS Glue, two key services for data storage and ETL (Extract, Transform, Load) processes. Participants will learn how to create data catalogs, prepare data, and how to use AWS Glue to schedule data processing tasks.
Module 2: Advanced Analytics with AWS Athena and Redshift (3 hours)
This module will guide participants in using AWS Athena for interactive queries and AWS Redshift for robust, scalable data warehousing. Participants will learn how to run complex queries, optimize performance, and effectively manage these AWS services within budget constraints.
Module 3: Real-time Data Analytics with AWS Kinesis (3 hours)
This module will delve into AWS Kinesis, a service for real-time data streaming and analytics. Participants will learn how to use Kinesis Data Streams, Data Firehose, Data Analytics, and Video Streams to meet various real-time data processing needs.
Module 4: Business Intelligence with AWS QuickSight (3 hours)
In this module, participants will learn how to use AWS QuickSight for visualizing and analyzing business data. Participants will learn how to create interactive dashboards, set up email reports, and embed analytics into applications.
Module 5: Practical AWS Data Analytics Projects (3 hours)
The final module will offer practical projects for participants to apply the knowledge and skills learned. Participants will engage in real-world AWS data analytics projects, solve actual business challenges, and practically apply their skills under expert guidance.
課程目標
本課程旨在教授中小企業專業人員如何利用Python自動化日常業務操作。學員將學會使用Python庫進行數據操作,並實現無縫的數據庫集成,以提高業務效率。
課程內容
Module 1: 高級Python編程技巧(3小時)
本模組將深入研究Python編程語言,學員將掌握高級數據結構、列表理解和高效編碼實踐。學員將深入探討Python的內置功能以及外部庫在業務操作管理中的使用。
Module 2: 使用Pandas和Numpy進行高級數據操作(3小時)
學員將學習如何使用Pandas和Numpy等Python庫執行高性能數據分析任務,包括數據清理、轉換和操作。本模組將解決管理非結構化和半結構化數據在業務上的挑戰。
Module 3: Python腳本化自動化業務操作(3小時)
學員將學習如何設計Python腳本來自動化例行業務任務,並利用庫,如smtplib用於自動郵件回應,以及os用於文件和目錄管理。本模組將介紹Python的sched和threading模塊,以實現定期和並發任務。
Module 4: Python-數據庫集成(3小時)
本模組將介紹如何建立和管理Python-數據庫連接,使用SQLite等數據庫。學員將學會如何從Python執行SQL命令,自動生成報告,並實施數據驅動的決策。
Module 5: Python在SME業務操作中的應用案例(3小時)
最後一個模組將提供實際案例研究,學員將在實際業務場景中應用他們所學的知識和技能。學員將參與真實的SME業務操作案例,解決實際業務挑戰,並應用Python來提高業務效率。
This course aims to teach professionals in small and medium-sized enterprises how to leverage Python for automating daily business operations. Participants will learn to manipulate data using Python libraries and achieve seamless database integration to enhance business efficiency.
Module 1: Advanced Python Programming Techniques (3 hours)
This module will delve deep into the Python programming language, where participants will master advanced data structures, list comprehensions, and efficient coding practices. The built-in functionalities of Python and the use of external libraries for business operations management will be explored in detail.
Module 2: Advanced Data Manipulation with Pandas and Numpy (3 hours)
Participants will learn how to perform high-performance data analysis tasks using Python libraries like Pandas and Numpy. This includes data cleaning, transformation, and manipulation. The module will address challenges related to managing unstructured and semi-structured data in a business context.
Module 3: Automating Business Operations with Python Scripts (3 hours)
Participants will learn how to design Python scripts to automate routine business tasks, utilizing libraries such as smtplib for automated email responses and os for file and directory management. This module will introduce Python's sched and threading modules for scheduling periodic and concurrent tasks.
Module 4: Python-Database Integration (3 hours)
This module will introduce how to establish and manage Python-database connections, using databases like SQLite. Participants will learn how to execute SQL commands from Python, auto-generate reports, and implement data-driven decisions.
Module 5: Case Studies of Python in SME Business Operations (3 hours)
The final module will offer real case studies for participants to apply the knowledge and skills learned. Participants will engage in actual SME business operation scenarios, solve real business challenges, and apply Python to improve business efficiency.
課程目標
本課程旨在使中小企業專業人員深入了解區塊鏈技術,並提供實際技能,以部署區塊鏈解決方案,以提高業務的透明度、安全性和效能。
課程內容
模組1:設計分散式帳本系統(3小時)
本模組將全面介紹區塊鏈和分散式帳本技術(DLT)架構。學員將深入探討區塊鏈部署的技術考慮因素,包括去中心化、共識算法、密碼哈希和點對點網絡。
模組2:通過區塊鏈增強業務流程(3小時)
學員將學習如何實施區塊鏈技術,以簡化供應鏈管理、發票處理和合同執行等業務流程。課程將通過案例研究,介紹如何在傳統數據庫中集成DLT以提高操作效率。
模組3:在以太坊上編程和部署智能合同(3小時)
學員將深入了解以太坊平台及其支持去中心化應用程序(dApps)的功能。學員將學習Solidity語言的技術概述、語法以及編寫智能合同的原則。此外,學員將實際操作,開發、測試和部署智能合同。
模組4:利用區塊鏈實現業務流程自動化(3小時)
本模組將介紹使用智能合同實施業務流程自動化的策略。學員將了解如何使用Solidity中的事件和函數修飾符來創建複雜的智能合同,並深入研究智能合同部署時的安全考慮和最佳實踐。
This course aims to provide professionals in small and medium-sized enterprises with an in-depth understanding of blockchain technology and practical skills for deploying blockchain solutions to improve business transparency, security, and efficiency.
Module 1: Designing Distributed Ledger Systems (3 hours)
This module will provide a comprehensive introduction to blockchain and Distributed Ledger Technology (DLT) architecture. Participants will delve into technical considerations for deploying blockchain, including decentralization, consensus algorithms, cryptographic hashing, and peer-to-peer networks.
Module 2: Enhancing Business Processes through Blockchain (3 hours)
Participants will learn how to implement blockchain technology to simplify business processes like supply chain management, invoice processing, and contract execution. The course will use case studies to introduce integrating DLT into traditional databases for operational efficiency.
Module 3: Programming and Deploying Smart Contracts on Ethereum (3 hours)
Participants will gain a deep understanding of the Ethereum platform and its capabilities for supporting decentralized applications (dApps). They will learn a technical overview of the Solidity language, its syntax, and principles for writing smart contracts. Additionally, participants will get hands-on experience in developing, testing, and deploying smart contracts.
Module 4: Implementing Business Process Automation Using Blockchain (3 hours)
This module will introduce strategies for implementing business process automation using smart contracts. Participants will learn how to use events and function modifiers in Solidity to create complex smart contracts and delve into security considerations and best practices for smart contract deployment.
課程目標
本課程旨在為中小企業專業人員提供有關加密貨幣的全面知識,以及其對業務交易、籌資和擴展到新市場的影響。
課程內容
模組1:加密貨幣的技術分析(3小時)
本模組將深入研究主要加密貨幣的技術架構,重點關注比特幣和以太坊。學員將學習挖礦過程、區塊鏈確認、交易生命周期以及加密學在加密貨幣中的應用。
模組2:利用加密貨幣進行業務交易(3小時)
學員將學習實施加密貨幣支付閘道,以進行業務交易。課程將介紹法律和監管考慮因素,並研究加密貨幣交易的波動風險和風險管理策略。
模組3:通過首次代幣發行(ICOs)進行籌資(3小時)
學員將詳細研究ICO作為籌資工具,理解過程、優點和風險。課程將分析成功的ICO案例研究,並從失敗的ICO案例中汲取經驗教訓。
模組4:在業務中使用加密貨幣交易所(3小時)
學員將深入了解加密貨幣交易所的運作方式,以及它們在業務背景下的角色。課程將介紹通過加密貨幣交易實現風險對沖和最優化收益的策略。
This course aims to provide professionals in small and medium-sized enterprises with comprehensive knowledge about cryptocurrencies and their impact on business transactions, fundraising, and expansion into new markets.
Module 1: Technical Analysis of Cryptocurrencies (3 hours)
This module will delve into the technical architecture of major cryptocurrencies, focusing on Bitcoin and Ethereum. Participants will learn about the mining process, blockchain confirmations, transaction life cycle, and the application of cryptography in cryptocurrencies.
Module 2: Conducting Business Transactions Using Cryptocurrencies (3 hours)
Participants will learn how to implement cryptocurrency payment gateways for business transactions. The course will introduce legal and regulatory considerations and explore volatility risks and risk management strategies for cryptocurrency transactions.
Module 3: Fundraising Through Initial Coin Offerings (ICOs) (3 hours)
Participants will examine in detail ICOs as a fundraising tool, understanding the process, advantages, and risks. The course will analyze successful ICO case studies and draw lessons from failed ICO ventures.
Module 4: Utilizing Cryptocurrency Exchanges in Business (3 hours)
Participants will gain an in-depth understanding of how cryptocurrency exchanges operate and their role in a business context. The course will introduce strategies for risk hedging and optimizing returns through cryptocurrency trading.
課程目標
本課程旨在培訓中小企業專業人員掌握Python,以實現數據驅動的業務決策,預測趨勢,並通過複雜的數據分析和可視化優化業務策略。
課程內容
模組1:深入研究Python用於商業智能(3小時)
學員將深入研究Python在商業智能方面的高級功能,重點關注數據結構、庫和高效的編碼實踐。學員將了解如何使用Python的內置功能和外部庫從業務數據中提取有價值的見解。
模組2:使用Python庫進行高級數據分析(3小時)
本模組將全面利用Python庫,如Pandas和Numpy,進行複雜的業務數據提取、轉換和加載(ETL)任務。學員將解決在業務背景下管理非結構化和半結構化數據的挑戰。
模組3:Matplotlib和Seaborn進行複雜的數據可視化(2小時)
學員將深入研究使用Matplotlib和Seaborn創建動態且具洞察力的業務智能儀表板。他們將學習如何通過視覺敘事方式傳達複雜的業務數據。
模組4:使用Scikit-learn進行業務預測的高級建模(2小時)
本模組將利用Scikit-learn的機器學習技術,進行業務預測。學員將實際應用監督式學習方法(線性回歸、決策樹)來預測業務中的模型。
模組5:Python實踐:中小企業商業智能案例研究(2小時)
本模組將詳細分析Python在中小企業商業智能中的實際應用,深入研究解決實際業務場景的問題解決策略和結果分析。學員將參與實際的項目,解決與數據分析、可視化和預測建模相關的真實業務挑戰。
This course aims to train professionals in small and medium-sized enterprises to master Python for data-driven business decisions, trend forecasting, and optimizing business strategies through complex data analysis and visualization.
Module 1: Deep Dive into Python for Business Intelligence (3 hours)
Participants will delve into the advanced features of Python in the context of business intelligence, focusing on data structures, libraries, and efficient coding practices. They will learn how to use Python's built-in functions and external libraries to extract valuable insights from business data.
Module 2: Advanced Data Analysis with Python Libraries (3 hours)
This module will fully utilize Python libraries like Pandas and Numpy for complex business data extraction, transformation, and loading (ETL) tasks. Participants will tackle the challenges of managing unstructured and semi-structured data in a business context.
Module 3: Complex Data Visualization with Matplotlib and Seaborn (2 hours)
Participants will delve into using Matplotlib and Seaborn to create dynamic and insightful business intelligence dashboards. They will learn how to convey complex business data through visual storytelling.
Module 4: Advanced Modeling for Business Forecasting with Scikit-learn (2 hours)
This module will leverage the machine learning techniques of Scikit-learn for business forecasting. Participants will apply supervised learning methods like linear regression and decision trees to predict business models.
Module 5: Python in Practice: SME Business Intelligence Case Studies (2 hours)
This module will provide a detailed analysis of Python's practical application in SME business intelligence, deeply investigating problem-solving strategies and outcome analysis in real business scenarios. Participants will engage in real projects, solving real business challenges related to data analysis, visualization, and predictive modeling.
課程:中小企業商業智能:釋放 Python 的力量
課程目標
本課程旨在培訓中小企業專業人員掌握Python,以實現數據驅動的業務決策,預測趨勢,並通過複雜的數據分析和可視化優化業務策略。
課程內容
模組6:高級數據可視化技術(2小時)
本模組將專注於高級數據可視化技術,包括互動式數據儀表板的建立,以及使用先進的圖表和圖形優化可視化效果。
模組7:時間序列分析和預測(3小時)
學員將學習如何使用Python進行時間序列數據分析,以便預測未來的趨勢和模式,並應用這些洞察力來優化業務策略。
模組8:機器學習應用於業務優化(3小時)
本模組將介紹機器學習算法的實際應用,包括客戶分析、市場預測和推薦系統,以提高業務效率和營銷策略。
模組9:個性化營銷和A/B測試(2小時)
學員將學習如何運用Python和數據分析技術來實現個性化營銷,並使用A/B測試來優化營銷策略,提高客戶參與度。
模組10:Python實踐:中小企業商業智能案例研究(2小時)
本模組將通過深入的案例研究分析,演示Python在不同業務情境下的實際應用,包括客戶分析、預測建模、個性化營銷和A/B測試。
This course aims to train professionals in small and medium-sized enterprises to master Python for data-driven business decisions, trend forecasting, and optimizing business strategies through complex data analysis and visualization.
Module 6: Advanced Data Visualization Techniques (2 hours)
This module will focus on advanced data visualization techniques, including the creation of interactive data dashboards, and optimizing visualizations with advanced charts and graphics.
Module 7: Time Series Analysis and Forecasting (3 hours)
Participants will learn how to use Python for time series data analysis to predict future trends and patterns, and apply these insights to optimize business strategies.
Module 8: Machine Learning Applications for Business Optimization (3 hours)
This module will introduce practical applications of machine learning algorithms, including customer analytics, market forecasting, and recommendation systems, to improve business efficiency and marketing strategies.
Module 9: Personalized Marketing and A/B Testing (2 hours)
Participants will learn how to leverage Python and data analytics to implement personalized marketing and use A/B testing to optimize marketing strategies, improving customer engagement.
Module 10: Python in Practice: SME Business Intelligence Case Studies (2 hours)
This module will offer a detailed analysis through deep case studies, demonstrating the practical application of Python in various business scenarios, including customer analytics, predictive modeling, personalized marketing, and A/B testing.
課程目標
本課程旨在向中小企業專業人員提供高級技能,以利用AWS服務進行數據分析,幫助他們通過獲取洞察力並做出數據驅動的決策來推動業務增長。
課程內容
模組6:AWS S3和Glue的數據存儲和ETL過程(3小時)
本模組將深入介紹AWS S3的數據存儲和AWS Glue的ETL操作,學員將學習如何對數據進行目錄編制、準備和作業調度。
模組7:使用AWS Athena和Redshift進行高級分析(3小時)
學員將了解如何利用AWS Athena進行互動式查詢服務以及使用AWS Redshift進行強大、可擴展的數據倉儲。本模組還包括運行複雜查詢、優化性能以及管理Athena和Redshift成本的實踐。
模組8:使用AWS Kinesis進行實時分析(3小時)
本模組將介紹如何利用AWS Kinesis進行實時數據流式傳輸和分析。學員將了解Kinesis Data Streams、Data Firehose、Data Analytics和Video Streams等實時數據處理需求。
模組9:使用AWS QuickSight進行業務智能(3小時)
學員將學習如何使用AWS QuickSight可視化並分析業務數據。模組包括構建互動式儀表板、設置電子郵件報告以及將分析嵌入應用程序中。
This course aims to provide professionals in small and medium-sized enterprises with advanced skills to utilize AWS services for data analysis, helping them drive business growth by gaining insights and making data-driven decisions.
Module 6: Data Storage and ETL Processes with AWS S3 and Glue (3 hours)
This module will provide an in-depth introduction to data storage in AWS S3 and ETL operations with AWS Glue. Participants will learn how to catalog, prepare, and schedule data tasks.
Module 7: Advanced Analysis Using AWS Athena and Redshift (3 hours)
Participants will learn how to leverage AWS Athena for interactive query services and AWS Redshift for robust, scalable data warehousing. This module also includes hands-on practice for running complex queries, optimizing performance, and managing costs in Athena and Redshift.
Module 8: Real-Time Analytics Using AWS Kinesis (3 hours)
This module will introduce how to leverage AWS Kinesis for real-time data streaming and analytics. Participants will learn about Kinesis Data Streams, Data Firehose, Data Analytics, and Video Streams for real-time data processing needs.
Module 9: Business Intelligence Using AWS QuickSight (3 hours)
Participants will learn how to use AWS QuickSight to visualize and analyze business data. The module includes building interactive dashboards, setting up email reports, and embedding analytics into applications.
課程目標
本課程旨在提高中小企業專業人員對使用AWS服務優化其雲基礎設施的理解,使其能夠簡化運營並實現成本效益。
課程內容
模組1:精通用於基礎設施管理的AWS服務(4小時)
本模組將深入研究AWS生態系統,理解關鍵服務及其應用。它將詳細探討Amazon EC2、S3和RDS服務,用於計算、存儲和數據庫管理。
模組2:使用AWS的網絡管理(3小時)
學員將學習如何使用Amazon VPC進行雲資源的隔離和安全網絡管理。本模組將介紹如何使用安全組和NACL進行網絡訪問控制和路由管理。
模組3:高級身份和訪問管理(IAM)(2小時)
這個模組將涵蓋確保安全訪問AWS服務和資源的方法,通過IAM進行身份和訪問管理。學員將開發AWS中角色、用戶和策略的安全性增強策略。
模組4:使用CloudFormation的自動化和基礎設施即代碼(3小時)
本模組將介紹基礎設施即代碼(IaC)范式,引入AWS CloudFormation。學員將學習如何開發、部署和更新堆疊模板,以實現自動化基礎設施管理。
This course aims to enhance the understanding of professionals in small and medium-sized enterprises in optimizing their cloud infrastructure using AWS services. This will enable them to simplify operations and achieve cost-effectiveness.
Module 1: Mastering AWS Services for Infrastructure Management (4 hours)
This module will delve deep into the AWS ecosystem, understanding key services and their applications. It will explore in detail Amazon EC2, S3, and RDS services used for computing, storage, and database management.
Module 2: Network Management with AWS (3 hours)
Participants will learn how to use Amazon VPC for isolating cloud resources and secure network management. This module will introduce how to use security groups and NACLs for network access control and routing management.
Module 3: Advanced Identity and Access Management (IAM) (2 hours)
This module will cover methods to ensure secure access to AWS services and resources by using IAM for identity and access management. Participants will develop enhanced security policies for roles, users, and policies within AWS.
Module 4: Automation and Infrastructure as Code with CloudFormation (3 hours)
This module will introduce the Infrastructure as Code (IaC) paradigm, featuring AWS CloudFormation. Participants will learn how to develop, deploy, and update stack templates for automated infrastructure management.
課程目標
本課程旨在教授中小企業運營者高級Python技術,使他們能夠在日常運營中應用自動化,利用Python庫進行有效的數據操作並實現無縫的數據庫集成。
課程內容
模組1:運營的高級Python編程(4小時)
學員將深入研究Python編程語言,掌握高級數據結構、列表理解和高效編碼實踐。模組將詳細探討Python的內置功能以及用於運營管理的外部庫。
模組2:使用Pandas和Numpy進行高級數據操作(4小時)
學員將充分利用Pandas和Numpy等Python庫,執行高性能數據分析任務,包括數據清理、轉換和操作。學員將解決在業務上處理非結構化和半結構化數據時的挑戰。
模組3:用於運營自動化的Python腳本(3小時)
本模組將介紹如何設計Python腳本,以自動執行例行任務,利用庫(如smtplib用於自動郵件回覆,os用於文件和目錄管理)。學員將了解Python的sched和threading,用於定期和並發任務。
模組4:用於中小企業的Python-數據庫集成(3小時)
本模組將教授如何建立和管理Python-數據庫連接,使用SQLite。學員將學習如何從Python執行SQL命令,自動生成報告。學員將實現基於數據的決策,利用Python和SQL。
模組5:案例研究:Python在中小企業運營背景下的應用(3小時)
學員將深入分析Python在中小企業運營中的實際應用,研究問題解決策略和結果分析。本模組將包括真實世界的模擬和實際操作項目,重點關注Python在提高運營效率方面的作用。
This course aims to teach advanced Python techniques to small and medium-sized enterprise operators. It will enable them to apply automation in daily operations, effectively manipulate data using Python libraries, and achieve seamless database integration.
Module 1: Advanced Python Programming for Operations (4 hours)
Participants will delve deep into the Python programming language, mastering advanced data structures, list comprehensions, and efficient coding practices. The module will explore Python's built-in features and external libraries used for operational management.
Module 2: Advanced Data Manipulation with Pandas and Numpy (4 hours)
Participants will fully leverage Python libraries like Pandas and Numpy to perform high-performance data analysis tasks, including data cleaning, transformation, and manipulation. They will address challenges of handling unstructured and semi-structured data in a business context.
Module 3: Python Scripts for Operational Automation (3 hours)
This module will introduce how to design Python scripts to automate routine tasks, utilizing libraries like smtplib for automated email responses and os for file and directory management. Participants will learn about Python's sched and threading for scheduled and concurrent tasks.
Module 4: Python-Database Integration for SMEs (3 hours)
This module will teach how to establish and manage Python-database connections using SQLite. Participants will learn how to execute SQL commands from Python, auto-generate reports, and make data-driven decisions using Python and SQL.
Module 5: Case Studies: Applications of Python in SME Operations (3 hours)
Participants will deeply analyze the real-world applications of Python in SME operations, studying problem-solving strategies and outcome analysis. This module will include real-world simulations and hands-on projects, focusing on Python's role in improving operational efficiency.
課程目標
本課程旨在使中小企業專業人士深入了解區塊鏈技術,為他們提供實際技能,以部署區塊鏈解決方案,提高業務透明度、安全性和效率。
課程內容
模組1:設計分佈式帳本系統(3小時)
學員將全面了解區塊鏈和分佈式帳本技術(DLT)架構。將討論區塊鏈部署的技術考慮因素:去中心化、共識算法、加密哈希和點對點網絡等。
模組2:用區塊鏈提高業務流程效率(3小時)
介紹區塊鏈技術的應用,以優化供應鏈管理、發票處理和合同執行。將分析將DLT集成到傳統數據庫中以提高業務效率的案例研究。
模組3:以太坊上的智能合同的編程和部署(3小時)
深入研究以太坊平台及其對去中心化應用(dApps)的支持。將詳細介紹Solidity,包括其語法和編寫智能合同的原則。學員將實際練習在以太坊測試網絡上開發、測試和部署智能合同。
模組4:利用區塊鏈進行業務流程自動化(3小時)
討論使用智能合同實現業務流程自動化的策略。學員將理解如何在Solidity中使用事件和函數修飾符,以創建複雜的智能合同。此外,將涉及部署智能合同的安全性考慮和最佳實踐。
This course aims to deepen the understanding of blockchain technology among professionals in small and medium-sized enterprises. It provides them with practical skills to deploy blockchain solutions to improve business transparency, security, and efficiency.
Module 1: Designing Distributed Ledger Systems (3 hours)
Participants will get a comprehensive understanding of blockchain and Distributed Ledger Technology (DLT) architecture. Technical considerations for deploying blockchain, such as decentralization, consensus algorithms, cryptographic hashing, and peer-to-peer networks, will be discussed.
Module 2: Enhancing Business Process Efficiency with Blockchain (3 hours)
The module introduces the application of blockchain technology to optimize supply chain management, invoice processing, and contract execution. Case studies on integrating DLT into traditional databases to improve business efficiency will be analyzed.
Module 3: Programming and Deploying Smart Contracts on Ethereum (3 hours)
An in-depth look into the Ethereum platform and its support for decentralized applications (dApps) is provided. Solidity will be discussed in detail, including its syntax and principles for writing smart contracts. Participants will get hands-on experience in developing, testing, and deploying smart contracts on the Ethereum test network.
Module 4: Business Process Automation Using Blockchain (3 hours)
Strategies for implementing business process automation using smart contracts are discussed. Participants will understand how to use events and function modifiers in Solidity to create complex smart contracts. Additionally, security considerations and best practices for deploying smart contracts will be covered.
課程目標
本課程旨在讓中小企業專業人士全面了解加密貨幣,以及它對業務交易、籌資和擴展到新市場的影響。
課程內容
模組1:加密貨幣的技術分析(3小時)
深入了解主要加密貨幣的技術架構,重點關注比特幣和以太坊。學習挖礦過程、區塊鏈確認、交易生命週期和加密學等加密貨幣的技術細節。
模組2:利用加密貨幣進行業務交易(3小時)
實施加密貨幣支付閘道,以進行業務交易。深入了解法律和監管考慮因素,並研究加密貨幣的波動性風險和減緩策略。
模組3:通過首次代幣發行(ICOs)籌集資金(3小時)
深入研究ICO作為籌集資金工具,理解ICO的過程、優勢和風險。分析成功的ICO案例研究,並從失敗的ICO中吸取教訓。
模組4:利用加密貨幣交易所進行業務(3小時)
了解加密貨幣交易所的運作方式以及它們在業務上的作用。學習如何通過加密貨幣交易進行風險對沖和優化收益的策略。
This course aims to provide small and medium-sized enterprise professionals with a comprehensive understanding of cryptocurrency and its impact on business transactions, fundraising, and expansion into new markets.
Module 1: Technical Analysis of Cryptocurrency (3 hours)
A deep dive into the technical architecture of major cryptocurrencies, with a focus on Bitcoin and Ethereum. Participants will learn about the mining process, blockchain confirmation, transaction lifecycle, and the role of cryptography in cryptocurrencies.
Module 2: Leveraging Cryptocurrency for Business Transactions (3 hours)
Implementation of cryptocurrency payment gateways for business transactions. In-depth understanding of legal and regulatory considerations, along with an exploration of the volatility risks associated with cryptocurrency and mitigation strategies.
Module 3: Fundraising Through Initial Coin Offerings (ICOs) (3 hours)
An in-depth study of ICOs as a fundraising tool, understanding the process, advantages, and risks associated with it. Analysis of successful ICO case studies and lessons learned from failed ICOs.
Module 4: Utilizing Cryptocurrency Exchanges for Business (3 hours)
Understanding the functioning of cryptocurrency exchanges and their role in a business context. Learning strategies for hedging risks and optimizing returns through cryptocurrency trading.
Chan Siu Pong, Penny
Penny是一位多才多藝的IT專業人士,畢業於香港中文大學工程學士學位,並在澳大利亞的查爾斯·斯圖爾特大學完成了信息技術碩士課程。他擁有多種微軟專業認證,包括.NET和SQL2000。Penny精通多種編程語言和工具,從Android和iOS到Visual Basic和C++。他還具有報告編寫和網頁設計的專業經驗,包括使用Crystal Report和Photoshop。在系統支持方面,她擅長Exchange和LAN網絡等領域。他曾在幾家知名公司和機構擔任重要職務,在中國銀行和政府統計部門等領域做出了重大貢獻。他是一位綜合性的IT專家,具有廣泛的技術知識和豐富的實踐經驗,擅長軟件開發、數據分析和項目管理。
Chan Siu Pong, Penny
Penny Chan is a versatile IT professional with a bachelor's degree in engineering from the Chinese University of Hong Kong and a master's degree in information technology from Charles Sturts University in Australia. She holds various Microsoft professional certifications, including .NET and SQL2000. Penny is proficient in multiple programming languages and tools, including Android, iOS, Visual Basic, and C++. He specializes in report writing and web design, using tools like Crystal Report and Photoshop. Penny excels in system support, with expertise in areas like Exchange and LAN Network. He has held important positions in well-known companies and institutions and has made significant contributions in areas like business and user needs analysis at the Bank of China and the government statistics department. He is a comprehensive IT expert with a wide range of technical knowledge and extensive practical experience, excelling in software development, data analysis, and project management.
Kevin Yiu Fung Tsang曾畢業於斯旺西大學,主修計算機科學,尤其擅長大數據和機器學習領域。他的論文集中在文本檢測和識別,展示了他在這一領域的專業知識。Kevin精通多種編程語言,包括Python和Haskell,以及HTML和PHP等網頁開發語言。他的技能涵蓋多個領域,並熟悉Tableau、Inviwo、TensorFlow和OpenCV等工具和庫。凱文的多才多藝確保FortuneGPT始終處於技術前沿。
Yiu Fung Tsang, Kevin
Kevin Yiu Fung Tsang graduated from Swansea University with a major in computer science. He excels in the fields of big data and machine learning, with a thesis focusing on text detection and recognition. Kevin is proficient in various programming languages, including Python and Haskell, as well as web development languages like HTML and PHP. His skills span multiple domains, and he is well-versed in tools and libraries such as Tableau, Inviwo, TensorFlow, and OpenCV. Kevin's versatility ensures that FortuneGPT remains at the forefront of technology.
Jack Leung Man Hin擁有斯旺西大學土木工程碩士學位。儘管他的背景看似不符合計算機科學,但他迅速融入了軟件開發領域,運用了在學校培養的嚴謹科學思維。他獨立思考和創新的能力使他成為團隊中的關鍵人物。
LEUNG MAN HIN, JACK
Jack Leung Man Hin holds a master's degree in civil engineering from Swansea University. Despite his non-traditional background in computer science, he has quickly integrated into the field of software development. His rigorous scientific thinking and ability to think independently and innovate make him a key player in the team.
Tianyu Shi就讀於多倫多大學,專攻智能交通系統工程。他的研究重點是自動交通控制中的強化學習,提供了對機器學習和人工智慧領域的深刻洞察。
Tianyu Shi
Tianyu Shi is a Ph.D. student from Princeton University with experience as a research assistant and machine learning engineer at prestigious institutions and companies, including MIT, the University of California, Berkeley, and Uber. His expertise and experience provide FortuneGPT with valuable external perspectives and suggestions.
Qiang Zhang是普林斯頓大學的博士生,在MIT、加州大學伯克利分校和Uber等知名機構和公司擔任過研究助理和機器學習工程師。他的經驗和專業知識為FortuneGPT提供了寶貴的外部觀點和建議。
Qiang Zhang is a Ph.D. student from Princeton University with experience as a research assistant and machine learning engineer at prestigious institutions and companies, including MIT, the University of California, Berkeley, and Uber. His expertise and experience provide FortuneGPT with valuable external perspectives and suggestions.
Copyright © 2023 Fortacin group
We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.